RAS Earth ScienceФизика Земли Izvestiya, Physics of the Solid Earth

  • ISSN (Print) 0002-3337
  • ISSN (Online) 3034-6452

Application of the Seismic Interferometry Method for Studying the Earth’s Inner Core

PII
S0002333725020012-1
DOI
10.31857/S0002333725020012
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
3-18
Abstract
For a more detailed description of the dynamic processes and determination of the properties of the inner core regions, inaccessible to study by traditional methods, the seismic interferometry method, which is based on the technique of cross-correlation analysis of time series for different types of data, was applied in this work. Cross-correlation analyses of the seismic coda window with a start three hours after a strong event and the end 10 hours later are performed for all possible pairs of more than 300 stations and 6 large earthquakes (for each separately) occurring between 2013 and 2024. Synthetic cross-correlograms are calculated for models with different attenuation and an additional boundary in the inner core. Four different types of inner core studies by seismic interferometry were carried out: global, regional, station latitude-dependent, and calendar time-dependent. The stability of the PKIKPPPKIKP wave on global correlograms, the possibility of its observation in areas with high and low density of seismic stations, the dependence of the wave travel time on the angle between the wave direction and the Earth rotation axis, and the stationarity of the wave for the time period from 2013 to 2024 were demonstrated.
Keywords
волна PKIKPPKIKP поздняя кода глобальные кросс-коррелограммы анизотропия
Date of publication
25.12.2024
Year of publication
2024
Number of purchasers
0
Views
15

References

  1. 1. Краснощеков Д.Н., Овчинников В.М., Усольцева О.А. О скорости поперечных волн в вершине внутреннего ядра Земли // Докл. РАН. 2019. Т. 488. № 4. С. 434-438.
  2. 2. Усольцева О.А., Овчинников В.М., Краснощеков Д.Н. Об особенностях переходной зоны от внешнего к внутреннему ядру Земли из характеристик волн PKIIKP и PKPc-dif // Физика Земли. 2021. № 1. С. 1-14.
  3. 3. Bensen G.D., Ritzwoller M.H., Barmin M.P., Levshin A.L., Lin F., Moschetti M.P., Shapiro N.M., Yang Y. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements // Geophys. J.Int. 2007. V. 169. P. 1239-1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x
  4. 4. Boué P., Poli P., Campillo M., Roux P. Reverberations, coda waves and ambient noise: correlations at the global scale and retrieval of the deep phases // Earth Planet.Sci. Lett. 2014. V. 391. P. 137-145. https://doi.org/10.1016/j.epsl.2014.01.047
  5. 5. Campillo M., Paul A. Long-range correlations in the diffuse seismic coda // Science. 2003. V. 299. P. 547-549.
  6. 6. Cormier V. F., Stroujkova A. Waveform search for the innermost inner core // Earth Planet. Sci. Lett. 2005. V. 236. P. 96-105.
  7. 7. Dziewonski A.M., Anderson D.L. Preliminary reference Earth model // Physics of the Earth and Planetary Interiors. 1981. V. 25. № 4. P. 297-356. https://doi.org/10.1016/00319201 (81)90046-7
  8. 8. Helffrich G., Mainprice D. Anisotropy at the inner core boundary // Geophys. Res. Lett. 2019. V. 46. № 21. P. 11959-11967.
  9. 9. Ishii M., Dziewonski A.M. The innermost inner core of the earth: evidence for a change in anisotropic behaviour at the radius of about 300 km // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 14026-14030.
  10. 10. Kennett B.L.N., E.R. Engdahl, R. Buland Constraints on seismic velocities in the Earth from travel times // Geophysical Journal International. 1995. V. 122. № 1. P. 108-124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x
  11. 11. Lima Costa de T., Tkalčić H., Waszek L. A new probe into the innermost inner core anisotropy via the global coda-correlation wavefield // Journal of Geophysical Research: Solid Earth. 2022. V. 127. P. e2021JB023540. https://doi.org/10.1029/2021JB023540
  12. 12. Ma X., Tkalčić H. Seismic low-velocity equatorial torus in the Earth’s outer core: Evidence from the late-coda correlation wavefield // Sci. Adv. 2024. V. 10. P. eadn5562. https://doi.org/10.1126/sciadv.adn5562
  13. 13. Ma X., Tkalčić H. CCREM: New Reference Earth Model From the Global Coda-Correlation Wavefield // JGR Solid Earth. 2021. https://doi.org/10.1029/2021JB022515
  14. 14. Montagner J.-P., Kennett B.L.N. How to reconcile body-wave and normal-mode reference earth models // Geophysical Journal International. 1996. V. 125. № 1. P. 229-248. https://doi.org/10.1111/j.1365-246X.1996.tb06548.x
  15. 15. Morelli A., Dziewonski A., Woodhouse J. Anisotropy of the inner core inferred from PKIKP travel times // Geoph. Res. Lett. 1986. V. 13. P. 1545-1548.
  16. 16. Moschetti M.P., Ritzwoller M.H., Shapiro N.M. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps // Geochem. Geophys. Geosyst. 2007. V. 8. № 1-10. https://doi.org/10.1029/2007GC001655
  17. 17. Nissen-Meyer T., van Driel M., Stähler S.C., Hosseini K., Hempel S., Auer L., Colombi A., Fournier A. AxiSEM: broadband 3-D seismic wavefields in axisymmetric media // Solid Earth. 2014. V. 5. P. 425-445. https://doi.org/10.5194/se-5-425-2014
  18. 18. Pham T.-S. Advancing correlation methods of earthquake coda in seismic body wave studies. Ph.D.Thesis. 2019. The Australian National University. 205 p.
  19. 19. Song X., Helmberger D.V. Seismic evidence for an inner core transition zone // Science. 1998. V. 282. P 924-927.
  20. 20. Tkalčić H, Phạm T.-S. Wang S. The Earth’s coda correlation wavefield: Rise of the new paradigm and recent advances // Earth-Science Reviews. 2020. V. 208. https://doi.org/10.1016/j.earscirev.2020.103285
  21. 21. Tkalčić H., Pham T.-S. Excitation of the global correlation wavefield by large earthquakes // Geophysical Journal International. 2020. https://doi.org/10.1093/gji/ggaa369
  22. 22. Tkalčić H., Pham T.-S. Shear properties of Earth’s inner core constrained by a detection of J waves in global correlation wavefield // Science. 2018. V. 362. № 6412. P. 329-332. https://doi.org/10.1126/science.aau7649
  23. 23. Wang T., Song X., Xia X.X. Equatorial anisotropy in the inner part of Earth’s inner core from autocorrelation of earthquake coda // Nature geoscience. 2015. V. 8. № 3. P. 224-227. https://doi.org/10.1038/ngeo235
  24. 24. Wang T., Song X. Support for equatorial anisotropy of Earth’s inner-inner core from seismic interferometry at low latitudes // Physics of the Earth and Planetary Interiors. 2018. V. 276. P. 247-257. https://doi.org/10.1016/j.pepi.2017.03.004
  25. 25. Wang W.J.E., Pang Vidale G., Koper K.D., Wang R. Inner core backtracking by seismic waveform change reversals // Nature. 2024. 10.1038/s41586-024-07536-4
  26. 26. Wapenaar K., Draganov D., Snieder R., Campman X., Verdel A. Tutorial on seismic interferometry: Part 1 - Basic principles and applications // Geophysics. 2010. V. 75. № 5. P. 75A195-75A209. https://doi.org/10.1190/1.3457445
  27. 27. Zhan Z., Ni S., Helmberger D.V., Clayton R.W. Retrieval of Moho-reflected shear wave arrivals from ambient seismic noise // Geophysical Journal International. 2010. V. 182. № 1. P. 408-420. https://doi.org/10.1111/j.1365-246X.2010.04625.x
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library