- Код статьи
- S0002333725020037-1
- DOI
- 10.31857/S0002333725020037
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 2
- Страницы
- 36-42
- Аннотация
- В работе представлены оценки рельефа границ зоны фазовых переходов мантии на глубинах около 410 и 660 км по данным сети сейсмических станций о. Сахалин методом функций приемника. Проанализирован представительный набор данных, состоящий из 2500 индивидуальных PRF. Выявлено, что граница 660 испытывает опускание в центральной и северной частях острова. Граница 410 демонстрирует сильное поднятие в южной части о. Сахалин, с последующим опусканием ниже стандартных значений во всем регионе исследований. Высказано предположение о связи погружения границы 410 с присутствием в зоне фазовых переходов горячего вещества нижней мантии в северной части острова.
- Ключевые слова
- зона фазовых переходов мантия PRF зона субдукции Сахалин
- Дата публикации
- 18.02.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 10
Библиография
- 1. Авдейко Г.П., Попруженко С.В., Палуева А.А. Современная тектоническая структура Курило-Камчатского региона и условия магмообразования. Геодинамика и вулканизм Курило-Камчатской островодужной системы. ИВГиГ ДВО РАН. Петропавловск-Камчатский. 2001. 428 с.
- 2. Бурмаков Ю.А., Винник Л.П., Косарев Г.Л. и др. Структура и динамика литосферы по сейсмическим данным. М.: Наука. 1988. 221 с.
- 3. Винник Л.П. Cейсмология приемных функций // Физика Земли. 2019. № 1. С. 16-27.
- 4. Винник Л.П., Косарев Г.Л., Петерсен Н.В. Передаточные функции мантии в дальневосточной зоне субдукции // Докл. РАН. 1997. Т. 353. № 3. С. 379-382.
- 5. Тараканов Р.З., Веселов О.В., Андреева М.Ю. О возможной границе фазовых переходов на глубине 350 км для зоны перехода от континента к океану // Докл. РАН. 2015. Т. 460. № 5. С. 585-588.
- 6. Bianchi M.B., Assumpção M., Koch C., Beck S. Effect of the cold Nazca Slab on the depth of the 660 km discontinuity in South America // Journal of South American Earth Sciences. 2021. V. 112. Part 1. 103607. DOI: 10.1016/j.jsames.2021.103607
- 7. Cui Q., Zhou Y., Liu L., Gao Y., Li G., Shengfeng Zhang S. The topography of the 660-km discontinuity beneath the Kuril-Kamchatka: Implication for morphology and dynamics of the northwestern Pacific slab // Earth and Planetary Science Letters. 2023. V. 602. 117967.
- 8. Fichtner A., van Herwaarden D.P., Afanasiev M., Simutė S., Krischer L., Çubuk-Sabuncu Y., Taymaz T., Colli L., Saygin E., Villaseñor A. et al. The collaborative seismic earth model: generation 1 // Geophysical Research Letters. 2018. V. 45. № 9. P. 4007-4016.
- 9. Fukao Y., Obayashi M. Subducted slabs stagnant above, penetrating through, and trapped belowthe 660 km discontinuity // Journal of Geophysical Research: Solid Earth. 2013. V. 118. P. 5920-5938.
- 10. Fukao Y., Obayashi M. Subducted slabs stagnant above, penetrating through, and trapped belowthe 660 km discontinuity // Journal of Geophysical Research: Solid Earth. 2013. V. 118. P. 5920-5938.
- 11. Goes S., Yu C., Ballmer M.D. et al.Compositional heterogeneity in the mantle transition zone // Nature Review Earth & Environment. 2022. V. 3. P. 533-550 DOI: 10.1038/s43017-022-00312-w
- 12. Guo Z., Zhou Y. Stagnant slabs and their return flows from finite-frequency tomography of the 410-km and 660-km discontinuities // Journal of Geophysical Research: Solid Earth. 2021. V. 126. e2020JB021099.
- 13. Han R., Li Q., Huang R., Zhang H. Detailed structure of mantle transition zone beneath southeastern China and its implications for thinning of the continental lithosphere // Tectonophysics. 2020. V. 789. 228480. DOI: 10.1016/j.tecto.2020.228480
- 14. Hayes G.P., Moore G.L., Portner D.E., Hearne M., Flamme H., Furtney M., Smoczyk G.M. Slab2, a comprehensive subduction zone geometry model // Science. 2018. V. 362. P. 58-61. DOI: 10.1126/science.aat4723
- 15. Helffrich G. Topography of the transition zone seismic discontinuities // Rev. Geophys. 2000. V. 38. № 1. P. 141- 158.
- 16. Ishii T., Ohtani E. Dry metastable olivine and slab deformation in a wet subducting slab // Nature Geoscience. 2021. V. 14. P. 526-530. DOI: 10.1038/s41561-021-00756-7
- 17. Kennett B.L.N., Engdahl E.R.Traveltimes for global earthquake location and phase identification // Geophys. J.Int. 1991 V. 105. Р. 429-465.
- 18. Liu X., Zhao D. P and S wave tomography of Japan subduction zone from joint inversions of local and teleseismic travel times and surface-wave data // Physics of the Earth and Planetary Interiors. 2016. V. 252. P. 1-22. DOI: 10.1016/j.pepi.2016.01.002
- 19. Lloyd A.J., Wiens D.A., Zhu H., Tromp J., Nyblade A.A., Aster R.C. et al. Seismic structure of the Antarctic upper mantle imaged with adjoint tomography // Journal of Geophysical Research: Solid Earth. 2020. V. 125. №. 3. 2019JB017823. DOI: 10.1029/2019JB017823
- 20. Mark H.F., Wiens D.A., Ivins E.R., Richter A., Mansour W., Magnani M.B. et al. Lithospheric erosion in the Patagonian slab window, and implications for glacial isostasy // Geophysical Research Letters. 2022. V. 49. e2021GL096863. DOI: 10.1029/2021GL096863
- 21. Mishra S., Prajapati S., Teotia S. S. Mantle Transition Zones (MTZ) discontinuities beneath the Andaman Subduction Zone // Journal of Asian Earth Sciences. 2020. DOI: 10.1016/j.jseaes.2019.104102
- 22. Ringwood A. E. Phase transformations and their bearing on the constitution and dynamics of the mantle // Geochim. Cosmochim. Acta. 1991. V. 55. Р. 2083-2110.
- 23. Sun M., Yu Y., Gao S., Liu K. Stagnation and tearing of the subducting northwest Pacific slab // Geology. 2022. V. 50. № 6. P. 676-680.