RAS Earth ScienceФизика Земли Izvestiya, Physics of the Solid Earth

  • ISSN (Print) 0002-3337
  • ISSN (Online) 3034-6452

Reconstruction of the Spatial Distribution of Filtration Properties of Heterogeneous Geologic Media Based on Variations of Microseismicity Resulting from Fluid Injection

PII
S0002333725020091-1
DOI
10.31857/S0002333725020091
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
114-127
Abstract
Determining the properties of heterogeneous reservoirs based on microseismic evolution data is an important task in field development. Analyzing the propagation of microseismic events occurring during fluid injection/withdrawal provides valuable information about permeability and stress state of the reservoir. In this paper, we consider the inverse problem of determining reservoir filtration properties from microseismic event propagation data. For this purpose, the influence of various geological factors on the distribution of microseismic event sources is investigated. Machine learning methods were used to identify correlations between geologic model parameters and microseismicity evolution. Due to the insufficient variability of in-situ data, an artificial database of catalogs of microseismic events containing the coordinates of sources and their occurrence times was created to train the model. For this purpose, numerical modeling of fluid injection and generation of microseismic events in synthetic models of permeable media with different geological structure was carried out. Thus, a comprehensive approach to the restoration of filtration properties of heterogeneous reservoirs from microseismicity evolution data using machine learning methods is proposed. The proposed methodology can be applied to optimize field development, improve the efficiency of fluid extraction and reduce the risks associated with the occurrence of undesirable anthropogenic seismic activity.
Keywords
техногенная сейсмичность фильтрация жидкости проницаемость численное моделирование машинное обучение
Date of publication
25.12.2024
Year of publication
2024
Number of purchasers
0
Views
15

References

  1. 1. Адушкин В. В., Турунтаев С. Б. Техногенная сейсмичность - индуцированная и триггерная. М.: ИДГ РАН. 2015a. 364 с.
  2. 2. Баренблатт Г. И., Ентов В. М., Рыжик В. М. Движение жидкостей и газов в природных пластах. М.: Недра. 1984. 211 с.
  3. 3. Dichiarante A.M., Langet N., Bauer R.A., Goertz-Allmann B.P., Williams-Stroud S.C., Kühn D., Oye V., Greenberg S.E., Dando B.D.E.Identifying geological structures through microseismic cluster and burst analyses complementing active seismic interpretation // Tectonophysics. 2021. Т. 820. С. 229107.
  4. 4. Jessell M., Guo J., Li Y., Lindsay M., Scalzo R., Giraud J., Pirot G., Cripps E., Ogarko V.Into the Noddyverse: a massive data store of 3D geological models for machine learning and inversion applications // Earth Syst Sci Data. 2022. Т. 14. № 1. С. 381-392.
  5. 5. Ritz V., Rinaldi A. P., Wiemer S. Transient evolution of the relative size distribution of earthquakes as a risk indicator for induced seismicity // Commun Earth Environ. 2022. Т. 3.
  6. 6. Scibek J. Multidisciplinary database of permeability of fault zones and surrounding protolith rocks at world-wide sites // Sci Data. 2020. Т. 7. № 1. С. 95.
  7. 7. Shapiro S. Fluid-Induced Seismicity. Cambridge: Cambridge University Press. 2015.
  8. 8. Turuntaev S., Eremeeva E., Zenchenko E. Laboratory study of microseismicity spreading due to pore pressure change // J. Seismol. 2013. Т. 17.
  9. 9. Vaswani A., Shazeer N.M., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser L., Polosukhin I. Attention is all you need. Adv Neural Inf Process Syst. 2017. Т. 2017-Decem. № Nips. С. 5999-6009.
  10. 10. Zoback M. D. Managing the seismic risk posed by wastewater disposal // Earth Magazine. 2012. С. 38-43.
  11. 11. Zwicker D. A Python package for solving partial differential equations // J. Open Source Softw. 2020. Т. 5. № 48. С. 2158. idglgfd/permeability_reconstruction_network [Электронный ресурс]. URL: https://github.com/idglgfd/permeability_reconstruction_network (дата обращения: 15.08.2024).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library