RAS Earth ScienceФизика Земли Izvestiya, Physics of the Solid Earth

  • ISSN (Print) 0002-3337
  • ISSN (Online) 3034-6452

Acoustic Emission Accompanying Preparation of Dynamic Slip on a Model Heterogeneous Fault of Meter Scale

PII
S0002333725020107-1
DOI
10.31857/S0002333725020107
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
128-136
Abstract
Regularities in distribution of tectonic fault sections with different frictional properties control to a great extent the dynamics of fault sliding. The impossibility of directly studying the structure of fault zones at seismogenic depths makes it especially important to develop diagnostic methods that would provide information on the structural features of earthquake sources formation areas and, thereby, predict the sliding dynamics. This work presents results of laboratory experiments directed to studying regularities of elastic wave emission during shear deformation of a model fault with a spatially inhomogeneous structure of the sliding interface. The model fault was a loaded contact of diabase blocks 750 × 120 mm in size. Two round zones, each 100 mm in diameter, were made at the interface. Those zones had high strength showing the property of velocity weakening, the so-called asperities. The relative position of asperities changed in experiments. The process of dynamic slip formation, caused by asperity disruption, was accompanied by emission of a great number of acoustic pulses that were recorded in the frequency range of 20-80 kHz. During the experiments, the data on spatial distribution of pulses allow to detect two separate contact regions only when the distance between these regions exceeded 20 mm. Differences in the statistics of pulses emitted at different asperities were observed.
Keywords
тектонический разлом асперити акустическая эмиссия медленное скольжение пространственно-временной анализ лабораторный эксперимент
Date of publication
25.12.2024
Year of publication
2024
Number of purchasers
0
Views
14

References

  1. 1. Беседина А.Н., Новикова Е.В., Белоклоков П.В. и др. Особенности зон локализации сильнейших землетрясений Курило-Камчатской дуги // Физика Земли. 2025. № 2. С. 19-35.
  2. 2. Гридин Г.А., Кочарян Г.Г., Морозова К.Г., Новикова Е.В., Остапчук А.А., Павлов Д.В. Развитие процесса скольжения по гетерогенному разлому. Крупномасштабный лабораторный эксперимент // Физика Земли. 2023. № 3. С. 139-147.
  3. 3. Кочарян Г.Г. Геомеханика разломов. М.: ГЕОС. 2016. 424 с.
  4. 4. Кочарян Г.Г. Возникновение и развитие процессов скольжения в зонах континентальных разломов под действием природных и техногенных факторов. Обзор современного состояния вопроса // Физика Земли. 2021. № 4. С. 3-41. https://doi.org/10.31857/S0002333721040062
  5. 5. Кочарян Г.Г., Остапчук А.А., Павлов Д.В., Гридин Г.А., Морозова К.Г., Hongwen J., Пантелеев И.А. Лабораторные исследования закономерностей фрикционного взаимодействия блоков скальной породы метрового масштаба. Методика и первые результаты // Физика Земли. 2022. № 6. С. 162-174.
  6. 6. Соболев Г.А. Физические основы прогноза землетрясений. М.: Наука. 1993. 314 с.
  7. 7. Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука. 2003. 270 с.
  8. 8. Allen R. Automatic earthquake recognition and timing from single traces // Bull. Seismol. Soc. Am. 1978. V. 68. P. 1521- 1532.
  9. 9. Buijze L., Guo Y., Niemeijer A.R., Ma S., Spiers C.J. Effects of heterogeneous gouge segments on the slip behavior of experimental faults at dm scale // Earth Planet. Sci. Lett. 2021. https://doi.org/10.1016/j.epsl.2020.116652.
  10. 10. Collettini C., Tesei T., Scuderi M.M., Carpenter B.M., Viti C. Beyond Byerlee Friction, Weak Faults and Implications for Slip Behavior // Earth Planet. Sci. Lett. 2019. V. 519. P. 245-263. https://doi.org/10.1016/j.epsl.2019.05.011
  11. 11. Corbi F., Funiciello F., Brizzi S., Lallemand S., Rosenau M. Control of asperities size and spacing on seismic behavior of subduction mega thrusts // Geophys. Res. Lett. 2017.V. 44. P. 8227-8235. https://doi.org/10.1002/2017GL074182
  12. 12. Dublanchet P., Bernard P., Favreau P.Interactions and triggering in a 3-D rate-and-state asperity model // J. Geophys. Res. Solid Earth. 2013. V. 118. P. 2225-2245, https://doi.org/10.1002/jgrb.50187
  13. 13. Fagereng Å., Beall A. Is complex fault zone behaviour a reflection of rheological heterogeneity? // Phil.Trans.R.Soc. 2021. A 379: 20190421. https://doi.org/10.1098/rsta.2019.0421
  14. 14. Frank W., Shapiro N. M., Husker A., Kostoglodov V., Gusev A.A., Campillo M. The evolving interaction of low-frequency earthquakes during transient slip // Science Advances. 2016. V. 2. № 4. P. e1501616. https://doi.org/10.1126/sciadv.1501616
  15. 15. Gulia L., Wiemer S. Real-time discrimination of earthquake foreshocks and aftershocks // Nature. 2019. V. 574. P. 193-199. https://doi.org/10.1038/s41586-019-1606-4
  16. 16. Gutenberg, B. & Richter, C. F. Frequency of earthquakes in California // Bull. Seismol. Soc. Am. 1944. V. 34. P.185-188.
  17. 17. Kocharyan G.G., Ostapchuk A.A., Pavlov D.V. Fault Sliding Modes - Governing, Evolution and Transformation. Multiscale Biomechanics and Tribology of Inorganic and Organic Systems / Ostermeyer G.P., Popov V.L., Shilko E.V., Vasiljeva O.S. (eds.). Cham.: Springer. 2021. P. 323-358. https://doi.org/10.1007/978-3-030-60124-9_15
  18. 18. OstapchukA, Polyatykin V, Popov M, Kocharyan G. Seismogenic patches in a tectonic fault interface // Front. Earth Sci. 2022. V. 10. P. 904814. https://doi.org/10.3389/feart.2022.904814
  19. 19. Peng Z., Gomberg J. An integrated perspective of the continuum between earthquakes and slow-slip phenomena // Nature Geoscience. 2010. V. 3. № 9. P. 599-607. https://doi.org/10.1038/ngeo940
  20. 20. Turcotte D.L. Self-organized criticality // Rep. Prog. Phys. 1999. V. 62. P. 1377. https://doi.org/10.1088/0034-4885/62/10/201
  21. 21. Veedu D. M., Barbor S. The Parkfield tremors reveal slow and fast ruptures on the same asperity // Nature. 2016. V. 532. P. 361-365. https://doi.org/10.1038/nature17190
  22. 22. Vorobieva I., Shebalin P., Narteau C. Break of slope in earthquake size distribution and creep rate along the San Andreas Fault system // Geophysical Research Letters. 2016. V. 43. P. 6869-6875. https://doi.org/10.1002/2016GL069636
  23. 23. Wyss M., Sobolev G., Clippard J.D. Seismic quiescence precursors to two M7 earthquakes on Sakhalin Island, measured by two methods // Earth Planet Sp. 2004. V. 56 Pp. 725-740, 554, 116652.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library