RAS Earth ScienceФизика Земли Izvestiya, Physics of the Solid Earth

  • ISSN (Print) 0002-3337
  • ISSN (Online) 3034-6452

Theory of Anhysteretic Remanent Magnetization for Randomly Spatially Oriented Uniaxial Single-Domain Particles

PII
S0002333725010013-1
DOI
10.31857/S0002333725010013
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
3-12
Abstract
A generalization of the theory of formation of anhysteretic remanent magnetization (ARM) is generalized for noninteracting randomly spatially oriented uniaxial single-domain particles. It is shown that approximate expressions for the ARM intensity, which have been proposed in (Schcherbakov and Shcherbakova, 1977; Victora, 1989; Egli, 2002), are quite admissible for obtaining estimates. However, our calculations have revealed a striking discrepancy between theoretical conclusions and experimental results. It follows from the theory that the ARM intensity exceeds by several times the thermoremanent magnetization (TRM) intensity, while experiments lead to the inverse relation between ARM and TRM. For resolving this paradox and for explaining the mechanism of ARM formation in rocks, it is necessary to supplement the theory proposed here by including the magnetostatic interactions; as regards experimental verification, it is necessary to carry out experiments with ARM and TRM for ensembles of noninteracting grains (i.e., for their very low concentration in the sample).
Keywords
безгистерезисная остаточная намагниченность термоостаточная намагниченность метод псевдо-Телье кинетические уравнения
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Афремов Л.Л., Харитонский П.В. О магнитостатическом взаимодействии в ансамбле растущих однодоменных зерен // Изв. АН СССР. Сер. Физика Земли. 1988. № 2. С. 101–105.
  2. 2. Белоконь В.И., Нефедев К.В. Функция распределения случайных полей взаимодействия в неупорядоченных магнетиках. Спиновое и макроспиновое стекло // Журнал экспериментальной и теоретической физики. 2001. Т. 120. Вып.1 (7). С. 156–164.
  3. 3. Борисова Г.П., Шолпо Л. Е. О возможности статистических оценок палеонапряженности геомагнитного поля // Изв. АН СССР. Сер. Физика Земли. 1985. № 7. С. 71–79.
  4. 4. Методы палеомагнитных исследований горных пород [Текст] / В.И. Белоконь, В.В. Кочегура, Л.Е. Шолпо (ред.). Мин. геологии СССР. Всесоюз. науч.-исслед. геол. ин-т (ВСЕГЕИ). Л.: Недра. Ленингр. отд-ние. 1973. 247 с.
  5. 5. Нагата Т. Магнетизм горных пород. М.: Мир. 1965. 348 c.
  6. 6. Щербаков В.П., Щербакова В.В. К расчету термоостаточной и идеальной намагниченностей ансамбля взаимодействующих однодоменных зерен // Изв. АН СССР. Сер. Физика Земли. 1977. № 6. С. 69–83.
  7. 7. Щербаков В.П., Сычева Н.К. Теория безгистерезисной остаточной намагниченности однодоменных зерен // Физика Земли. 2023. № 5. С. 3–12. DOI: 10.31857/S0002333723050095
  8. 8. Brown W. F. Thermal fluctuation of a single-domain particle // Phys. Rev. 1963. V. 130. P. 1677–1686.
  9. 9. Dekkers M.J., Böhnel H.N. Reliable absolute palaeointensities independent of magnetic domain state // Earth Planet. Sci. Lett. 2006. V. 248. P. 507–516.
  10. 10. de Groot L.V., Biggin A.J., Dekkers M.J., Langereis C.G., Herrero-Bervera E. Rapid regional perturbations to the recent global geomagnetic decay revealed by a new Hawaiian record // Nat. Commun. 2013. № 4. DOI:10.1038/ncomms3727
  11. 11. Dunlop D., Ozdemir O. Rock magnetism. Fundamentals and frontiers. Cambridge University Press. 1997. 573 p.
  12. 12. Egli R., Lowrie W. Anhysteretic remanent magnetization of fine magnetic particles //
  13. 13. Journal of Geophysical Research. 2002. V. 107. № B10, 2209. DOI:10.1029/2001JB000671
  14. 14. Jaep W. F. Anhysteretic magnetization of an assembly of single-domain Particles // J. Appl. Phys. 1969. V. 40. P. 1297–1298.
  15. 15. Paterson Greig A., Heslop David and Yongxin Pan The pseudo-Thellier palaeointensity method: new calibration and uncertainty estimates // Geophys. J. Int. 2016. V. 207. P. 1596–1608. DOI: 10.1093/gji/ggw349
  16. 16. Shaw J. A new method of determining the magnitude of the paleomagnetic field // Geophys. J. R. Astron. Soc. 1974. V. 39. P. 133–141.
  17. 17. Shcherbakov V.P., Sycheva N.K., Lamash B.E. Monte Carlo modelling of TRM and CRM acquisition and comparision of their properties in an ensemble of interacting SD grains // Geophys. Res. Lett. 1996. V. 26. № 20. P. 2827–2830.
  18. 18. Shcherbakov V. P., Lhuillier F., Sycheva N. K. Exact Analytical Solutions for Kinetic Equations Describing Thermochemical Remanence Acquisition for Single-Domain Grains: Implications for Absolute Paleointensity Determinations // JGR Solid Earth. 2021. V. 126. Is. 5. P. 1-24. DOI: 10.1029/2020JB021536
  19. 19. Stacey F.D., Banerjee S.K. The physical principles of the rock magnetism. Amsterdam: Elsevier. 1974. 195 p.
  20. 20. Stoner E.C., Wohlfarth E.P. Coercive force of fine particles // Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences. 1948. V. 240. P. 599–601. DOI:10.1098/rsta.1948.0007
  21. 21. Sugiura N. ARM, TRM, and magnetic interactions: concentration dependence // Earth Planet. Sci. Lett. 1979. V. 42. P. 451–455.
  22. 22. Tauxe L., Pick T., Kok Y. S. Relative paleointensity in sediments: A pseudo-Thellier approach // Geophys. Res. Lett. 1995. V. 22. P. 2885–2888.
  23. 23. Victora R. H. Predicted time dependence of the switching field for magnetic materials // Phys. Rev. Lett. 1989. V. 63. P. 457–460.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library