RAS Earth ScienceФизика Земли Izvestiya, Physics of the Solid Earth

  • ISSN (Print) 0002-3337
  • ISSN (Online) 3034-6452

Characterization of Ground Conditions at Seismic Stations in the North Caucasus Using Machine Learning Methods

PII
S0002333725010127-1
DOI
10.31857/S0002333725010127
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
180-196
Abstract
To extend the capabilities of using records of local earthquakes (for constructing regional ground motion prediction equations, assessing seismic hazard, etc.), the classification of seismic stations in the North Caucasus by the ground conditions was performed. A technique has been developed that allows assessment of ground conditions by comparing spectra of weak earthquakes selected in narrow ranges of magnitudes and hypocentral distances, at different stations. The use of machine-learning methods showed the complexity of the problem, but at the same time, the application of logical operations and techniques allowed us to find the most effective approaches to solve it. As a result, 70 seismic stations of the North Caucasus were classified according to the ground conditions; the conditions were characterized by one dimensionless parameter based on the calculation of spectral characteristics. We are planning to refine the estimates in the future.
Keywords
характеризация грунтовых условий Северный Кавказ спектральные параметры методы машинного обучения
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Акимов В. А. и др. Карты сейсмической опасности Северо-Западного и Центрального Кавказа в детальном масштабе // Вопросы инженерной сейсмологии. 2019. Т. 46. №. 4. С. 57–74.
  2. 2. Векслер В. А. Машинное обучение на основе алгоритма “k-ближайших соседей”. Вызовы цифровой экономики: итоги и новые тренды. 2019. С. 110–115.
  3. 3. Виноградова Е. П., Головин Е. Н. Метрики качества алгоритмов машинного обучения в задачах классификации. Научная сессия ГУАП. 2017. С. 202–206.
  4. 4. Габсатарова И. П. и др. Северный Кавказ // Землетрясения Северной Евразии. 2018. №. 21 (2012). С. 79–94.
  5. 5. Габсатарова И. П. и др. Северный Кавказ. Землетрясения России в 2020 году. Обнинск: ФИЦ ЕГС РАН. 2022. 204 с.
  6. 6. Генрихов И. Е., Дюкова Е. В. Классификация на основе полных решающих деревьев //Журнал вычислительной математики и математической физики. 2012. Т. 52. №. 4. С. 750–761.
  7. 7. Гусев А.А., Мельникова В.Н. Связи между магнитудами — среднемировые и для Камчатки // Вулканология и сейсмология. 1990. № 6. С. 55–63.
  8. 8. Дьяконов И. Д., Новикова С. В. Решение задачи прогнозирования при помощи градиентного бустинга над решающими деревьями. Научный форум: технические и физико-математические науки. 2018. С. 9–12.
  9. 9. Кузьмина С. В., Ефимов А. И. Актуальные методы машинного обучения в области классификации. Актуальные проблемы современной науки и производства. 2018. С. 34–38.
  10. 10. Наумов В. Н., Жиряева Е. В., Падерно П. И. Анализ данных и машинное обучение. Методы и инструментальные средства. 2020.
  11. 11. Павленко О. В. Сейсмические волны в грунтовых слоях: нелинейное поведение грунта при сильных землетрясениях последних лет. Науч. мир. 2009.
  12. 12. Пруцкий Н. И. и др. Геология и минерагения Северного Кавказа-современное состояние (Геологический атлас Северного Кавказа м-ба 1: 1 000 000) // Региональная геология и металлогения. 2005. №. 25. С. 27–38.
  13. 13. Рогожин Е.А. Сейсмическая опасность на Северном Кавказе // Экологический Вестник научных центров ЧЭС. 2012. № 1. С. 124–128.
  14. 14. Boore D.M. Simulation of Ground Motion Using the Stochastic Method // Pure Appl. Geophys. 2003. V. 160. P. 635–676.
  15. 15. Brink H., Richards J., Fetherolf M. Real-world machine learning. Simon and Schuster. 2016.
  16. 16. Oppenheim A. V. Discrete-time signal processing. Pearson Education India. 1999.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library