RAS Earth ScienceФизика Земли Izvestiya, Physics of the Solid Earth

  • ISSN (Print) 0002-3337
  • ISSN (Online) 3034-6452

Magnetic Field Variations in Geodynamo Models

PII
S0002333725030019-1
DOI
10.31857/S0002333725030019
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
3-8
Abstract
An increase in the intensity of heat sources in the Earth’s core leads to a decrease in the intensity of the dipole magnetic field. The spatial spectrum of the magnetic field becomes multipole. The intensity of variations of the magnetic dipole and its deviations from the rotation axis increases. The dependence of the duration of magnetozones of constant polarity depends on the amplitude of the magnetic dipole according to a power law. The exponent of the power function can change by a factor of two depending on the dipole amplitude. Superchrons of the magnetic field correspond to high intensity of the magnetic dipole.
Keywords
геомагнетизм динамо экскурсы инверсии
Date of publication
07.08.2024
Year of publication
2024
Number of purchasers
0
Views
12

References

  1. 1. Зельдович Я.Б., Рузмайкин А.А., Соколов Д.Д. Магнитные поля в астрофизике. М.: Наука. 1988.
  2. 2. Краузе Ф., Рэдлер К.-Х. Магнитная гидродинамика средних полей и теория динамо. М.: Мир. 1984.
  3. 3. Паркинсон У. Введение в геомагнетизм. М.: Мир. 1986.
  4. 4. Решетняк М.Ю. Адаптация модели среднего поля в геодинамо // Физика Земли. 2017. № 4. С. 93–99.
  5. 5. Решетняк М.Ю. Инверсии геомагнитного поля: ограничение на интенсивность конвекции в ядре Земли? // Геомагнетизм и аэрономия. 2021. Т. 61. № 2. С. 267–272.
  6. 6. Abe Y. Physical state of the very early earth // Lithos. 1993. V. 30. № 3–4. P. 223–235.
  7. 7. Bono R.K., Paterson G.A., Biggin A.J. MCADAM: A continuous paleomagnetic dipole moment model for at least 3.7 billion years // Geophys. Res. Lett. 2022. V. 49. P. 1–10.
  8. 8. Chandrasekhar S. Hydrodynamic and hydromagnetic stability. Courier Corporation. 1970.
  9. 9. Christensen U.R., Aubert J. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields // Geophys. J. Int. 2006. V. 166. № 1. P. 97–114.
  10. 10. Christensen U.R., Aubert J., Hulot G. Conditions for earth-like geodynamo models // Earth Planet. Sci. Lett. 2010. V. 296. № 3–4. P. 487–496.
  11. 11. Panovska S., Constable C. G., Korte M. Extending global continuous geomagnetic field reconstructions on timescales beyond human civilization // Geoch. Geophys. Geos. 2018. V. 19. P. 4757–4772.
  12. 12. Rüdiger G., Hollerbach R., Kitchatinov L.L. Magnetic processes in astrophysics: theory, simulations, experiments. John Wiley & Sons. 2013.
  13. 13. Wicht J. Inner-core conductivity in numerical dynamo simulations // Phys. Earth Planet. Int. 2002. V. 132. № 4. P. 281–302.
  14. 14. Wicht J., Sanchez S. Advances in geodynamo modelling // Geophys. Astr. Fluid Dyn. 2019. V. 113. P. 2–50.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library