- PII
- S30346452S0002333725040025-1
- DOI
- 10.7868/S3034645225040025
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 4
- Pages
- 21-34
- Abstract
- On January 22, 2024, an earthquake with = 7.0 occurred in the Southern Tien Shan in the Kyrgyzstan-China border region. The article presents an analysis of the previous seismicity of the region based on homogeneous seismological (global earthquake and focal mechanisms catalogues) and seismotectonic data (active fault global database). The aftershock sequence is also studied using regional data. It is shown that the focal area of the earthquake on January 22, 2024 partially filled the previously existing seismic gap and the gap in the active fault system. The aftershock sequence is intense, although without a pronounced strong aftershock. The aftershock mechanisms are almost identical with the main shock mechanism. According to regional data, there is a deficit of strong aftershocks ( ≥ 4.8). Whether this indicates the “incompleteness” of the seismic process or not, cannot be assessed based on just six months of data. The change in the number of aftershocks over time shows that after a month and a half after the main shock, the decay of the aftershock process slowed down. This may be due to both seismic activities reaching a long-term level and the redistribution of stresses in the focal area. As a rule, active fault maps serve as a seismotectonic basis for assessing seismic hazard. In this case, a strong earthquake occurred where no documented active faults were noted — it rather extended an existing fault, on the edge of which a cluster of earthquake foci had previously been noted. The question arises as to how reliable are seismic hazard assessments, the seismotectonic basis of which are mapped active faults.
- Keywords
- сильные землетрясения сейсмотектоника механизм очага землетрясения афтершоки
- Date of publication
- 28.03.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 24
References
- 1. Абубакиров И.Р., Гусев А.А., Гусева Е.М., Павлов В.М., Скоркина А.А. Массовое определение моментных магнитуд Mw и установление связи между Mw и ML для умеренных и слабых Камчатских землетрясений // Физика Земли. 2018. № 1. С. 37–51.
- 2. Вакарчук Р.Н., Татевосян Р.Э., Аптекман Ж.Я., Быкова В.В. Рачинское землетрясение 1991 г. на Кавказе: многоактная модель очага с компенсационным типом движения // Физика Земли. 2013. № 5. С. 58–64.
- 3. Гусев А.А., Мельникова В.Н. Связи между магнитудами — среднемировые и для Камчатки // Вулканология и сейсмология. 1990. № 6. С. 55–63.
- 4. Костров Б.В., Шебалин Н.В. Движения в очагах афтершоков Дагестанского землетрясения и теория разрушения. Исследования по физике землетрясений. М.: Наука. 1976. С. 87-93.
- 5. Кузнецова К.И., Аптекман Ж.Я., Шебалин Н.В., Штейнберг В.В. Афтершоки последействия и афтершоки развития очаговой зоны Дагестанского землетрясения. Исследования по физике землетрясений. М.: Наука. 1976. С. 94–113.
- 6. Семёнов-Тян-Ша́нский П.П. Первая поездка на Тянь-Шань, или Небесный хребет, до верховьев р. Яксарта, или Сыр-Дарьи, в 1857 году // Вестник РГО. 1858.
- 7. Соколова И.Н., Габсатарова И.П., Берёзина А.В., Аристова И.Л. Сильное землетрясение 22 января 2024 г. с Mw 7.0 на юге Тянь-Шаня // Российский сейсмологический журнал. 2024. Т. 6. № 1. C. 42–64. https://doi.org/10.35540/2686-7907.2024.1.03. EDN: KHSGBI
- 8. Татевосян Р.Э., Пономарев А.В., Тимошкина Е.П., Аптекман Ж. Я. Компенсационные движения в очаговой зоне высокомагнитудного роя землетрясений 2023 г. в провинции Герат, Афганистан // Физика Земли. 2024. № 4. С. 3–14.
- 9. Abrahamson N.A., Silva W.J., Kamai R. Summary of the ASK14 ground motion relation for active crustal regions // Earthquake Spectra. 2014. V. 30 (3). P. 1025–1055. doi: 10.1193/070913EQS198M
- 10. Afshari K., Stewart J.P. Physically Parameterized Prediction Equations for Significant Duration in Active Crustal Regions // Earthquake Spectra. 2016. V. 32 (4). P. 2057–2081.
- 11. Ameri G., Drouet S., Traversa P., Bindi D., Cotton F. Toward an empirical ground motion prediction equation for France: accounting for regional differences in the source stress parameter // Bull. Earthquake Eng. 2017. V. 15. P. 4681–4717. DOI 10.1007/s10518-017-0171-1
- 12. Båth M. Lateral inhomogeneities of the upper mantle // Tectonophysics. 1965. V. 2 (6). P. 483–514.
- 13. Bindi D., Cotton F., Kotha S.R., Bosse C., Stromeyer D., Gruenthal G. Application-driven ground motion prediction equation for seismic hazard assessments in non-cratonic moderate-seismicity areas // J. Seismology. 2017. V. 21. № 5. P. 1201–1218.
- 14. Bommer J.J., Stafford Р.J., Alarcón J.Е. Empirical Equations for the Prediction of the Significant, Bracketed, and Uniform Duration of Earthquake Ground Motion // Bull. Seismol. Soc. Amer. 2009. V. 99. № 6. P. 3217–3233. doi: 10.1785/0120080298
- 15. Boore D.M., Stewart J.P., Seyhan E., Atkinson G.M. NGA-West 2 equations for predicting PGA, PGV, and 5%-damped PSA for shallow crustal earthquakes. Earthquake Spectra. Aug 2014. V. 30(3). P. 1057–1085. doi: 10.1193/070113EQS184M
- 16. Richter C.F. An Instrumental Earthquake Magnitude Scale // Bulletin of the Seismological Society of America. 1935. V. 25. № 1. P. 1–32.
- 17. Campbell K.W., Bozorgnia Y. NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5%-damped linear acceleration response spectra // Earthquake Spectra. Aug 2014. V. 30 (3). P. 1087–1115. doi: 10.1193/062913EQS175M
- 18. Chiou B.S.-J., Youngs R.R. Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra // Earthquake Spectra. Aug 2014. V. 30 (3). P. 1117–1153. doi: 10.1193/072813EQS219M
- 19. Di Giacomo D., Engdahl E.R., Storchak D.A. The ISC-GEM Earthquake Catalogue (1904–2014): status after the Extension Project // Earth Syst. Sci. Data. 2018. V. 10. P. 1877–1899. doi: 10.5194/essd-10-1877-2018
- 20. Dziewonski A.M., Chou T.-A., Woodhouse J.H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity // J. Geophys. Res. 1981. V. 86. P. 2825–2852. doi: 10.1029/JB086iB04p02825
- 21. Ekström G., Nettles M., Dziewonski A.M. The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes // Phys. Earth Planet. Inter. 2012. V. 200–201. P. 1–9. doi: 10.1016/j.pepi.2012.04.002
- 22. Fuenzalida H., Rivera L., Haessler H., Legrand D., Philip H., Dorbath L., McCormack D., Arefiev S., Langer C., Cisternas A. Seismic source study of the Racha-Dzhava (Georgia) earthquake from aftershocks and broad-band teleseismic body-wave records: an example of active nappe tectonics // Geophys. J. Inter. 1997. V. 130. P. 29–46.
- 23. Haessler H., Deschamps A., Dufumier H., Fuenzalida H., Cisyernas A. The rupture process of the Armenian earthquake from broadband teleseismic body wave records // Geophys. J. Int. 1992. V. 109 P. 151–161.
- 24. Idini B., Rojas F., Ruiz S., Pasten C. Ground motion prediction equations for the Chilean subduction zone // Bull Earthquake Eng. 2017. V. 15. № 5. P. 1853–1880. DOI 10.1007/s10518-016-0050-1
- 25. Kostrov B.V., Das Sh. Principles of earthquake source mechanics. Cambridge University press. 1988. 286 p.
- 26. Nuttli O.W. Average seismic source-parameter relations for mid-plate earthquakes // Bull. Seism. Soc. Am. 1983. V. 73. P. 519–535.
- 27. Storchak D.A., Di Giacomo D., Engdahl E.R., Harris J., Bondár I., Lee W.H.K., Bormann P., Villaseñor A. The ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009): Introduction // Phys. Earth Planet. Int. 2015. V. 239. P. 48–63. doi: 10.1016/j.pepi.2014.06.009
- 28. Storchak D.A., Di Giacomo D., Bondár I., Engdahl E.R., Harris J., Lee W.H.K., Villaseñor A., Bormann P. Public Release of the ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009) // Seism. Res. Lett. 2013. V. 84. № 5. P. 810–815. doi: 10.1785/0220130034
- 29. Styron R., Pagani M. The GEM global active faults database // Earthquake Spectra. 2020. V. 36. № 1_suppl. P. 160–180.
- 30. Wells D.L., Coppersmith K.J. New empirical relationships among magnitude, rupture length rupture width, rupture area, and surface displacement // Bull. Seis. Soc. Am. 1994. V. 84. № 4.
- 31. Wu C., Zheng W., Zhang P., Zhang Z., Jia Q., Yu J., et al. Oblique thrust of the Maidan fault and late Quaternary tectonic deformation in the southwestern Tian Shan, northwestern China // Tectonics. 2019. V. 38. P. 974–1002. https://doi.org/10.1029/2018TC005248
- 32. https://www.usgs.gov/programs/earthquake-hazards/magnitude-types
- 33. http://www.isc.ac.uk
- 34. https://www.globalcmt.org/CMTsearch.html. Файл скачан 22.07.2024